Physics 11 Unit 2 Worksheet 4 Two Mass Problems

Name: \qquad

1. Find the acceleration and the tension in the example below (Flat, no friction)

To find tension look @ ore mus

$$
\square T=F_{N G T}=m a=(6.2)(3.59)=21.9 \mathrm{~N}
$$

2. Find the acceleration and the tension in the example below (Flat, w/friction)

$$
a=\frac{F_{N}}{m}=\frac{37.24}{17}=2.19 \mathrm{~m} / \mathrm{s}^{2}
$$

Tension - howl one mass

$$
\begin{aligned}
& \left\{\begin{array}{l}
T=? \\
=\nabla_{E_{\text {nEt }}}=m a=(9)(2.19)=19.715
\end{array}\right. \\
& F=89.2 \\
& F_{N}=F_{g}-T \\
& 19.715=98.2-T \\
& T=88.2-19.715=64.5 \mathrm{~N}
\end{aligned}
$$

3. Find the acceleration and the tension in the example below (Flat, w/friction)

$$
\begin{aligned}
& F_{F}=M F_{J}=(7)(784) M=0.7 \\
& F_{s}=54.88 \\
& \begin{array}{l}
\mathrm{Fq}_{q} \simeq m_{g} \\
=(8)(9.9)=79.4 \mathrm{~N}
\end{array} \\
& F_{g}=m g=(4)(9.8)=39.2
\end{aligned}
$$

In this case there is
enough potential friction force b counter act the Fy form the hanging mast, 50 Accel $=0$.
4. Find the acceleration in the example below (mass on slant)

$$
F_{n E T}=F_{y}=12.067
$$

$$
a=\frac{F_{N}^{\prime}}{M_{M}}=\frac{12.067}{2}=6.03 \mathrm{~m} / \mathrm{s}^{m}
$$

5. Find the acceleration in the example below (mass on slant)

$$
M=0,2 \quad m=4 \mathrm{~kg}
$$

(1) $F g=m g=(4)(9.8)$

$$
=35.597 \cdot \mathrm{~N}
$$

$$
=39.2 \mathrm{~N}
$$

(3) $F_{F}=\mu F_{\perp}=(0.2)(35.527)=7.105 \mathrm{~N}$
(4) $F_{\text {AET }}=16.566-7.105=9.460 \mathrm{~N}$
(5) $a=\frac{F_{W}}{m_{1}}=\frac{9.460}{4}=2.37 \mathrm{~m} / \mathrm{s}^{2}$.

