Physics 11 Unit 1 Graphing Worksheet

Name:			

Date:

We often graph data because it allows to visualize patterns. Typically patterns are repeatable and once we recognize the pattern we can make predictions.

- 1. Distance vs time graphs
 - The slope of a graph is rise/run
 - > For a d vs. t graph, slope = distance/time = velocity
 - > Based on this describe the motion depicted in the graphs below.

slope = vel zero slope, there for zero velocity

Neu

+ slope, poritive vel, or moving forward

@ a constant speed

increasing slope = increasing velocity

or

accelerating

2. Velocity vs time graphs

- > The slope of a graph is rise/run
- > For a v vs. t graph, slope = velocity/time = acceleration
- > Based on this describe the motion depicted in the graphs below.

3. Study the first graph and construct the second graph which represents the same motion.

Page 3 of 6

P11 U1 Graphing

4. Graph the following data in the graph provided

Time	Distance(m)
1 sec	2 4
2	
2 3 4 5	6
4	8
5	10
	12
6 7	14
8	16
9	18
10	20

- a) include a title, label the axis, draw a line through data
- b) calculate the slope, show your working

c) describe the motion of the object

5. Velocity vs Time graph. Graph the following data on the graph provided

Time	velocity
1 sec	15 m/s
2	20
3	25
4	30
5	35
6	40
7	45
8	50 55
9	55
10	60

- a) include a title, label the axis, draw a straight line through the data
- RISE/Run= 30/6=5 m/52. b) calculate the slope, show your working
- c) describe the motion of the object

d) The area under the graph represents the displacement of the object. Calculate the area under the graph (the displacement) between 1 second and 5 seconds. Break the area down into two shapes, a rectangle and a triangle. Show your working.

15 Mg = 60 m +
$$\frac{1}{4}$$
 area = $\frac{10}{4}$ × $\frac{1}{4}$ = $\frac{40}{4}$ Total area = $\frac{10}{4}$ × $\frac{1}{4}$ = $\frac{100}{4}$ m

6. Graph the following data on the graph provided

Time	velocity
1 sec	3
2	6
3	9
4	11
2 3 4 5 6 7	15
6	19
7	21
8	24
9	21 24 29
10	30

a) include a title, label the axis, draw a best fit line through usua

b) calculate the slope, show your working -use point from the line. 25/8 = 3.1 m/s².

d) describe the motion of the object