## Physics 12 Unit 1 Worksheet #1

|     | <u>\</u> |     |
|-----|----------|-----|
| 111 | <i>4</i> | , ) |
| ME  | 74       |     |
|     |          |     |

Name: \_\_\_\_

Date:

## **Vectors**

1. A woman walks 140 m North East. How far did she walk North?



2. A dog walks 20 m South then 45 m West. Find the resultant displacement (magnitude and direction).

$$R^{3} = 20^{2} + 45^{2}$$
  
 $R = 49.244m.$ 



3. Plane travels 500 km North, than 200 km West, than 100 km South, Find the 24° 5 of w. resultant displacement.



$$tan\theta = \frac{opp}{adj} = \frac{aco}{400} = 0.5$$

$$[tan-1]$$

$$\theta = 26.6$$



## **Kinematics C1 Relative Velocity**

1. A boat has a velocity of 7 m/s relative to the water. The current of the river it is crossing is 1.4 m/s. What angle/direction does the boat need to travel so that it's resultant velocity is directly across the river?



2. A boat is travelling across a river with a velocity of 8 m/s relative to the water. The current in the river is 2.3 m/s. If the boat heads straight across the river, how far down stream does the boat land?

## Kinematics C2 Motion in 1D and 2D

1. How long would it take to travel to 480 km to Vancouver if you travel at 87 km/hr?

$$f = \frac{d}{V} = \frac{480}{87} = 5.52 \text{ hours.}$$

2. How much distance does it take a car to stop if the car is travelling at 60 km/hr and it can de accelerate at 6.1 m/s<sup>2</sup>?

$$V_{p}^{2} = V_{1}^{2} + 2ad$$

$$O = (16.6)^{2} + 2(6.1)d$$

$$d = 22.8m.$$

KE 9

L33.3 M/J

3. How much distance does it take a car to stop if the car is travelling at 120 km/hr and it can de accelerate at 6.1 m/s<sup>2</sup>?

$$V_{f}^{2} = V_{i}^{2} + 2ad$$

$$\frac{V_{i}^{2}}{2a} = d = \frac{(33.3)^{2}}{3(64)} = 91.1m$$

| \* Note V; Pax, d P4x

seconds, what is your top speed, your average speed, and your acceleration?

4. If you start from rest, have a constant acceleration, and cover 155 m in 13

(i) Top speed.  

$$V:=0 d=155 +=13 Vp=?$$

$$d=\frac{V:+Vp}{2}+$$

$$155 = \left(\frac{0 + V_f}{a}\right) 13$$

(a) Aug spart.

$$V_{AVO} = \frac{cl}{t} = \frac{155}{13} = 11.9 \, \text{m/s}.$$

(3) Accel \* multiple methods.  

$$V_{f} = V_{i} + at$$
  
 $23.85 = 0 + a(13)$   
 $a = 1.83 m/s$ .

5. How much runway does a plane need for take off if it can accelerate at 7 m/s<sup>2</sup>, has a take off speed of 100 km/hr? \_\_ 27.7 m/s-

(Bonus, if the plane has mass of 1200 kg and we ignore friction, how much thrust does it require/)

$$V_{i}=0$$
  $\alpha=7m/s^{2}$   $V_{f}=27.7m_{f}$   $d=?$ 

$$V_{f}=V_{i}^{2}+2ad$$

$$(27.7)^{2}=0+2(7)d$$

$$F=\frac{1}{2}$$

$$d=55.1m$$



Torizon. 
$$\sqrt{38}$$
  $\sqrt{3}$   $\sqrt{3}$ 

7. Find the max height for the projectile in number 6. Let make that one possible solution,  $\sqrt{f} = V_1^2 + 2ad$ 

$$0^{3} = (37.170)^{2} + 2(-9.8)d$$
  $d = 70.5m$ .

8. Find the range for a car that launches off of a 5 m high cliff at 120 km/hr an angle 12 degrees above the horizon.

$$V_{x} = 3a.605 \text{ My}$$

$$V_{y} = 6.9303 \text{ m/s}$$

$$V_{x} = 3a.605 \text{ My}$$

1) To avoid a quadrate, don't solve for + directly.

Find 
$$V_f$$
.

 $V_f^a = V_i^a + 2ad$ 
 $V_f = V_i^a + 2(-9.8)(5)$ 
 $V_f = V_i^a + 2(-9.8)(5)$ 
 $V_f = V_i^a + at$ 
 $V_f = V_i^a + at$ 

$$3d=V_x+$$
=(32.605)(1.9403) =63.3m.

Page 4 of 4