Physics 12 Unit 4 - Momentum Worksheet #3

(2-D) Problems including Gov Problems

	Key		
J		٦.	

Name:		Date:	

Momentum is a vector quantity

1. Obliquely means at an angle.

A 0.25 kg ball moving north at 7.7 m/s strikes a wall obliquely and rebounds heading east with the same speed of 7.7 m/s. What was the magnitude and direction of the impulse on the ball?

	MAGNITUDE OF THE IMPULSE	DIRECTION OF THE IMPULSE
Α.	1.9 N·s	Due East
(B.)	(1.9 N·s)	45°S of E
C.	2.7 N·s	Due East
D.	2.7 N⋅s	45°S of E

$$\rho = mv = (25)(7.7) = 1.925 N/5.$$

- direction is SE.

Page 1 of 4

P12 U4 Momentum (2-D) Worksheet #3

2. The momentum initial was zero so the final needs to be zeró as well.

A 1.0 kg physics puck is at rest when a small explosion breaks it into three pieces. A 0.50 kg piece goes north at 10 m/s and a 0.30 kg piece goes east at 20 m/s. What is the magnitude of the momentum of the third piece?

- A. 1.0 kg m/s
- B. 3.3 kg m/s
- 7.8 kg m/s
- D. 11 kg m/s

means the three vectors will add to to tail to

p= mv = (3)(20) = 6 NS 3rd piece.

use pythagoras 1 C = 7.81 N.5

3. impulse = Pf - Pi

A 1 000 kg vehicle travelling westward at 15 m/s is subjected to a 1.0×10^4 N·s impulse northward. What is the magnitude of the final momentum of the vehicle?

- A. $5.0 \times 10^3 \text{ kg} \cdot \text{m/s}$
- B. $1.5 \times 10^4 \text{ kg} \cdot \text{m/s}$
- C. 1.8×10⁴ kg·m/s
- D. $2.5 \times 10^4 \text{ kg} \cdot \text{m/s}$

$$\nabla^{10,000}N^{.5}$$

$$\Delta \rho = \rho_f - \rho_i$$

$$\Delta \rho = \rho_f + (-\rho_i) \text{ means east.}$$
or

WAAAA

pythanorm

4. Pi = Pf, you have Pf so find Pi.

(5 marks) $\rho = ?$	PED
A 10 kg curling stone is sliding along the ice who	en it hits a stationary 15 kg bucket of sand. — T
After the collision, the curling stone's velocity is	3.0 m/s east, and the bucket has a velocity of
2.2 m/s, 40° S of E.	·

What direction was the curling stone moving before the collision?

$$0 \quad use \quad cosine \quad law$$

$$c^{9} = a^{2} + b^{2} - 2ab \cos \theta$$

$$\rho_{i}^{8} = 30^{9} + 33^{9} - 2(30)(33) \cos 140^{9}$$

$$\rho_{i}^{9} = 3505.7$$

$$\rho_{i}^{9} = 59.208 \quad N.5.$$

$$\frac{510\theta}{33} = \frac{510140}{59.208}$$

$$510\theta = 0.35826 \rightarrow \Theta = 210$$

$$5100 = 0.35826 \rightarrow \Theta = 210$$